Refine Your Search

Topic

Author

Search Results

Journal Article

Simultaneous Measurements of Aromatic Hydrocarbons in Exhaust using a Laser Ionization Method

2009-11-02
2009-01-2742
A simultaneous multi-composition analyzing (SMCA) resonance enhanced multi-photon ionization (REMPI) system was used to investigate gasoline engine exhaust. Observed peaks for exhaust were smaller mass numbers than those from diesel exhaust. However, large species up to three ring aromatics were observed suggesting that soot precursor forms even in the gasoline engine. At low catalyst temperature condition, the reduction efficiencies of a three-way catalyst were higher for higher mass numbers. This result indicates that the larger species accumulate in the catalyst or elsewhere due to their lower vapor pressures. To evaluate the emission of low volatility species, the accumulation should be taken into account. In the hot mode, reduction efficiencies for aromatic species of three-way catalyst were almost 99.5% however, they fall to 70% in the cold start condition.
Technical Paper

Real-time Analysis of Benzene in Exhaust Gas from Driving Automobiles Using Jet-REMPI Method

2009-11-02
2009-01-2740
Real-time analysis of benzene in automobile exhaust gas was performed using the Jet-REMPI (supersonic jet / resonance enhanced multi-photon ionization) method. Real-time benzene concentration of two diesel trucks and one gasoline vehicle driving in Japanese driving modes were observed under ppm level at 1 s intervals. As a result, it became obvious that there were many differences in their emission tendencies, because of their car types, driving conditions, and catalyst conditions. In two diesel vehicle, benzene emission tendencies were opposite. And, in a gasoline vehicle, emission pattern were different between hot and cold conditions due to the catalyst conditions.
Technical Paper

Investigation into Qualitative Dynamic Characteristics Analysis of Hydraulically Damped Rubber Mount for Vehicle Engine

2009-05-19
2009-01-2132
Hydraulically damped rubber mount (HDM) can effectively attenuate vibrations transmitting between automotive powertrain and body/chassis, and reduce interior noise of car compartment. This paper involves an analytical qualitative analysis approach of dynamics characteristics of HDM. Analysis of experimental results verifies the effectiveness of the qualitative analysis approach. Frequency- and amplitude-dependent dynamic characteristic of HDM are investigated to clarify working mechanism of HDM. The presented qualitative analysis approach provides a convenient performance adjustment guideline of HDM to meet vibration isolation requirements of powertrain mount system.
Technical Paper

Effect of Coexistent Additives on the Friction Characteristics and Tribofilm formation of Zinc Dialkyldithiophosphate

2007-07-23
2007-01-1989
The major aim of this study is to investigate the tribofilm formation and friction-speed characteristics of ZnDTP in the presence of other lubricant additives. Simultaneous measurement of friction and electrical conductivity were employed using ZnDTP and several kinds of functionally different additives. Several analyses of friction surfaces were also carried out in order to measure the reaction film thickness and investigate the chemical composition of this film. It was demonstrated that the presence of each additive with ZnDTP prevented the formation of a ZnDTP tribofilm and thereby could provide lower friction than ZnDTP alone.
Technical Paper

Pyrene-LIF Thermometry of the Early Soot Formation Region in a Diesel Spray Flame

2005-09-11
2005-24-006
In order to investigate early soot formation process in diesel combustion, spectral analysis and optical thermometry of early soot formation region in a transient spray flame under diesel-like conditions (Pg2.8 MPa, Tg620-820K) was attempted via laser-induced fluorescence (LIF) from pyrene (C16H10) doped in the fuel. Pyrene is known to exhibit a temperature\-dependent variation of LIF spectrum; the ratio of S2/S1 fluorescence yields, from the lowest excited singlet state S1 and the second excited singlet state S2, depends on temperature. In the present study, pyrene was doped (1%wt) in a model diesel fuel (0-solvent) and the variation of LIF spectra from the pyrene in the spray flame in a rapid compression machine were examined at different ambient temperatures, ambient oxygen concentrations, measurement positions and timings after start of fuel injection.
Technical Paper

Measurement of Excitation-Emission Matrix of Shock-heated PAHs using a Multi-wavelength Laser Source

2003-05-19
2003-01-1785
Measurements of Excitation-Emission Matrix (EEM) of shock-heated vapors of polycyclic aromatic hydrocarbons (PAHs) at high temperature (750-1500K) and high pressure (0.3-1.3MPa) conditions were conducted using a multi-wavelength excitation laser in order to demonstrate the potential of the single-measurement EEM fluorometry for investigation of soot precursors. Argon-diluted vapors of naphthalene and pyrene, as PAH model compounds, were heated in an optically accessible shock tube. The PAH vapors were excited by a coherent multi-wavelength “rainbow” laser light generated by converting the 4th harmonic (266nm) of a pulsed Nd:YAG laser using a Raman cell frequency converter filled with high-pressure (2MPa) methane-hydrogen mixture.
Technical Paper

2-D Imaging of Soot Formation Process in a Transient Spray Flame by Laser-induced Fluorescence and Incandescence Techniques

2002-10-21
2002-01-2669
In order to investigate the soot formation process in a diesel spray flame, simultaneous imaging of soot precursor and soot particles in a transient spray flame achieved in a rapid compression machine was conducted by laser-induced fluorescence (LIF) and by laser-induced incandescence (LII) techniques. The 3rd harmonic (355nm) and the fundamental (1064nm) laser pulses from an Nd:YAG laser, between which a delay of 44ns was imposed by 13.3m of optical path difference, were used to excite LIF from soot precursor and LII from soot particles in the spray flame. The LIF and the LII were separately imaged by two image-intensified CCD cameras with identical detection wavelength of 400nm and bandwidth of 80nm. The LIF from soot precursor was mainly located in the central region of the spray flame between 40 and 55mm (270 to 370 times nozzle orifice diameter d0) from the nozzle orifice. The LII from soot particles was observed to surround the soot precursor LIF region and to extend downstream.
Technical Paper

An Elementary Simulation of Vibration Isolation Characteristics of Hydraulically Damped Rubber Mount of Car Engine

2001-04-30
2001-01-1453
Hydraulically damped rubber engine mounts (HDM) are an effective means of providing sufficient isolation from engine vibration while also providing significant damping to control the rigid body motions of the engine during normal driving conditions. This results in a system which exhibits a high degree of non-linearity in terms of both frequency and amplitude. The numerical simulation of vibration isolation characteristics of HDM is difficult due to the fluid-structure interaction between the main supporting rubber and fluid in chambers, the nonlinear material properties, the large deformation of rubber parts, structure contact problems among the inner parts, and the turbulent flow in the inertia track. In this paper an integrated numerical simulation analysis based on structural FEM and a lumped-parameter model of HDM is carried out.
Technical Paper

Multi-Step Water Splitting with Mn-Ferrite/Sodium Carbonate System

1999-08-02
1999-01-2670
Multi-step water splitting with Mn-ferrite(MnFe2O4)/sodium carbonate(Na2CO3) system accompanying endothermic reaction was investigated for converting solar energy into chemical energy. This water splitting is caused by the oxidation-reduction of manganese ion in the Mn-ferrite. Multi-water splitting with MnFe2O4/Na2CO3 system was consisted of three steps. The first step was hydrogen generation at 1073K. The second step was oxygen release at 1273K. The third step was Na2CO3 reproduction at 873K. The mechanism of multi-water splitting has been considered by XRD, chemical analysis of colorimetry and back titration. The temperature range 873 to 1273K is quite lower than those studied on the solar furnace reaction (O2 releasing step) in two-step water splitting (1500-2300K). This lower temperature range would permit further progress in converting the direct solar energy into chemical energy.
Technical Paper

A Two-Zone Model Analysis of Heat Release Rate in Diesel Engines

1997-10-01
972959
A thermodynamic two-zone model which assumes a stoichiornetric burned gas region and unburned air region is presented in an attempt to calculate more precise rate of heat release of diesel combustion. A comparison is made of the rate of heat release obtained by the two-zone model with that obtained by the conventional single-zone model. It shows around 10 % increase in the rate of heat release with the two-zone model. The effect of state equation of gas is also examined with the single-zone model and the use of a real gas law in stead of the perfect gas law is found to yield minor difference in the rate of heat release at a high boost operating condition.
Technical Paper

Heat Engine with Reciprocating Super-Adiabatic Combustion in Porous Media

1997-02-24
970201
A one-dimensional numerical calculation has been performed on a new reciprocating heat engine proposed on the basis of super-adiabatic combustion in porous media. The system consists of two pistons and a thin porous medium in a cylinder; one being a displacer piston and the other a power piston. These create reciprocating motions with a phase relation angle. By means of the reciprocating flow system, the residual combustion gas enthalpy is effectively regenerated to induce enthalpy increase in the mixture through the porous medium. Due to heat recirculation, the thermal efficiency reaches to 58% under the condition of the compression ratio of 2.3.
Technical Paper

Combustion Enhancement of Very Lean Premixture Part in Stratified Charge Conditions

1996-10-01
962087
Local inhomogeneity of mixture concentration affects combustion characteristics in the lean burn system and also in the stratified charge combustion system. To investigate such combustion systems, the effects of inhomogeneous mixtures were examined using a carefully controlled experimental system. In this study, a constant-volume chamber, which can simulate an idealized stratified charge by using a removable partition inside the chamber, was developed. Flow and combustion characteristics were examined by indicated pressure analysis, Schlieren photography, ion probe measurements and local equivalence ratios measurements while varying the combination of initial equivalence ratios on each side of the partition. As a result, combustion characteristics of charge stratified, very lean propane-air mixture were clarified.
Technical Paper

Ignition, Combustion and Emissions in a DI Diesel Engine Equipped with a Micro-Hole Nozzle

1996-02-01
960321
In an attempt to achieve lean combustion in Diesel engines which has a potential for simultaneous reduction in no and soot, the authors developed a micro-hole nozzle which has orifices with a diameter as small as 0.06 mm. Combustion tests were carried out using a rapid compression-expansion machine which has a DI Diesel type combustion chamber equipped with the micro-hole nozzle. A comparison with the result of a conventional nozzle experiment revealed that the ignition delay was shortened by 30 %, and in spite of that, both peaks of initial premixed combustion and diffusion combustion increased significantly. The combustion in the case of the micro-hole nozzle experiment was accompanied with a decrease in soot emission, whereas an increase in NO emission.
Technical Paper

Simultaneous 2-D Imaging of OH Radicals and Soot in a Diesel Flame by Laser Sheet Techniques

1996-02-01
960834
The OH and soot in an unsteady flame, which was achieved in a rapid compression machine, were visualized simultaneously by the laser-induced fluorescence and laser-induced scattering techniques. The fuel mixture consisting of 90% paraffin hydrocarbon (reference fuel) and 10% polypropylene-glycol was used to reduce the optical attenuation caused by dense soot cloud. The simultaneous images of the fluorescence from OH and scattering from soot show that the soot and OH exist separately from each other in the leading portion of the spray flame, and the OH is formed earlier than the soot in the near field region of spray flame.
Technical Paper

Development of a Rapid Compression-Expansion Machine Simulating Diesel Combustion

1995-10-01
952514
A rapid compression-expansion machine was developed, which can simulate intake, compression, expansion and exhaust strokes in a single Diesel cycle by an electrically controlled and hydraulically actuated driving system. The whole system which is composed of a hydraulic actuator, fuel injector and a valve driving device, is sequentially controlled by a micro-computer. The machine features; 1) accurate control of piston position at TDC, 2) no effect of lubricant on HC emission due to the use of dry piston rings; 3) independent control of local wall temperature; and 4) high power output to drive heavy piston at high frequency. The single cycle operation permits Diesel combustion experiments under a wide range of operating conditions and easy access of optical diagnostics with minimized amount of test fuel. The performance test showed that the machine can drive a DI Diesel type piston with a 100 mm bore at a maximum frequency of 16.7 Hz at a maximum compression pressure of 15 MPa.
Technical Paper

A Study on Soot Formation and Oxidation in an Unsteady Spray Flame via Laser Induced Incandescence and Scattering Techniques

1995-10-01
952451
Two kinds of planar soot imaging techniques, laser induced incandescence (LII) and laser induced scattering (LIS) techniques were applied simultaneously to an unsteady free spray flame achieved in a rapid compression machine. An analysis of LII and LIS images yielded three kinds of qualitative images of soot concentration, size of soot particles, and number density of soot in the flame. These images revealed the fact that the soot is formed mainly in the center region of a flame resulting in an appearance of soot cloud with high number density and small particle size in this region, and then the soot size increases and the number density decreases while soot is conveyed downstream.
Technical Paper

On the Air-Entrainment Characteristics of Diesel Sprays and Flames in a Quiescent Atmosphere

1994-10-01
941924
Air-entrainment characteristics of non-evaporating sprays and flames were measured by means of high-speed photography including ordinary shadowgraphy of sprays, back diffused light illumination photography and laser shadow photography of flames. Effects of injection pressure and nozzle orifice diameter on air-entrainment characteristics were investigated parametrically. The amount of air entrained into a flame was calculated by a two-zone thermodynamic model with data obtained from the photographs and the pressure measurement in the combustion chamber. The air-entrainment characteristics of flames were compared with those of the corresponding sprays. It showed that immediately after the start of ignition, the air entrainment into a flame increased more rapidly as compared with the corresponding spray and then, with the development of diffusion combustion, the air entrainment gradually approached that of the spray.
Technical Paper

Quantitative Measurement of Fuel Vapor Concentration in an Unsteady Evaporating Spray via a 2-D Mie-Scattering Imaging Technique

1993-10-01
932653
The cross-sectional distribution of fuel vapor concentration in an evaporating spray was measured quantitatively by a new scattering imaging technique, silicone particle scattering imaging method, which was proposed in a previous paper[1]. When fuel containing silicone oil injected into a nitrogen environment at high temperature, the volatile base fuel in the droplets vaporized rapidly, leaving behind small droplets of silicone oil suspended in the vapor-gas mixture. The silicone oil droplets were illuminated by a thin laser sheet, and the scattered light was imaged by a CCD camera. The cross-sectional distribution of vapor concentration was estimated from the scattering image of the silicone oil droplets by Mie scattering theory. The results demonstrated clearly the inhomogeneity of the fuel vapor concentration. The distribution of vapor concentration was discontinuous, and islands of rich mixture with a scale of several millimeters existed in the center region of the spray.
Technical Paper

Effects of Flame Motion and Temperature on Local Wall Heat Transfer in a Rapid Compression-Expansion Machine Simulating Diesel Combustion

1992-10-01
922208
Local heat flux from the flame to the combustion chamber wall, q̇, was measured the wall surfaces of a rapid compression-expansion machine which can simulate diesel combustion. Temperature of the flame zone, T1, was calculated by a thermodynamic two-zone model using measured values of cylinder pressure and flame volume. A local heat transfer coefficient was proposed which is defined as q̇/(T1-Tw). Experiments showed that the local heat transfer coefficient depends slightly on the temperature difference, T1-Tw, but depends significantly on the velocity of the flame which contacts the wall surface.
Technical Paper

Mixing Enhancement in Diesel-Like Flames via Flame Impingement on Turbulence-Generating Plates

1992-10-01
922210
Soot concentration is very high in the periphery near the head of an unsteady spray flame which is achieved in a quiescent atmosphere in a rapid compression machine. To reduce soot concentration in this region, it was intended to improve fuel-air mixing by letting the flame impinge on a turbulence-generating plate. Two types of turbulence-generating plates, one donut-type, the other cross-type, were tested. Soot concentration in the flame was imaged using the laser shadow technique. The effect of injection pressure on soot reduction by the flame impingement was also investigated. The overall soot concentration is reduced significantly in the case when the flame impinges on the cross-type turbulence-generating plate at 50 mm (333 nozzle diameters) from the nozzle exit. The flame impingement on the cross-type turbulence-generating plate at 333 nozzle diameters makes soot reduction little dependent on injection pressures.
X